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Abstract

Based on the equivalence between the wave propagation in the electrical transmission-lines and acoustic tubes, the

authors proposed the use of the transmission-line matrix modeling (TLM) for time-domain solution method of the sound

field. TLM is known in electromagnetic engineering community, which is equivalent to the discrete Huygens’ modeling.

The wave propagation is simulated by tracing the sequences of the transmission and scattering of impulses. The theory and

the demonstrated examples are presented in the references, in which a sound absorbing field was preliminarily considered

to be a medium with simple acoustic resistance independent of frequency and the angle of incidence for the absorbing layer

placed on the room wall surface. The present work is concerned with the time-domain response for the characterization of

the sound absorbing materials. A lossy component with variable propagation velocity is introduced for sound absorbing

materials to facilitate the energy consumption. The frequency characteristics of the absorption coefficient are also

considered for the normal, oblique and random incidence. Some numerical demonstrations show that the present modeling

provide a reasonable modeling of the homogeneous sound absorbing materials in time domain.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Time domain analysis or transient response analysis is becoming more and more important as the increase
of the capability of the digital computers. It is more realistic and provides full wave analysis. Electro-
acoustical engineers have been favored the use of the electrical circuit analogy to acoustical problems. This
dynamical analogy has extensively been used for the acoustical device design [1–4]. This is because many of the
engineers involving with the electro-acoustical device design are electrical engineers and the electrical
components are well established under long wave-length assumption. Their counterparts have been introduced
in mechanical and acoustical systems. As in electro-mechanical-acoustical devices electrical, mechanical and
acoustical systems are coupled, the unified approach is not only convenient but also provides a model, which
ee front matter r 2007 Elsevier Ltd. All rights reserved.

v.2007.03.001

ing author.

ess: chaily123@yahoo.co.jp (L. Chai).

www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2007.03.001
mailto:chaily123@yahoo.co.jp


ARTICLE IN PRESS
L. Chai, Y. Kagawa / Journal of Sound and Vibration 304 (2007) 587–605588
helps the over-view and the understanding of their physical behaviors. It is possible to solve the problems
completely numerically. That is, the differential equations established are numerically solved, in which the
response is simply obtained for a certain input. The system in consideration is a block box in which its physical
insight is lost. Engineers are those who like to have an intuitive understanding.

Craggs proposed the sound absorbing materials based on the finite element modeling in frequency
domain [5,6]. One of the present authors proposed a finite-element equivalent circuits for acoustical
field [7]. They are all modeled for frequency domain. With the advent of the digital signal processing,
the time domain modeling is frequently required. It is not only reflecting the real problem but also gives full
wave analysis. The tracing of the applied and reflected impulses forms the discrete time signals which
match the digital signal processing. In fact, the field discretized is interpreted as a series of the connections of
digital filters.

Based on the equivalence between the wave propagation in the electrical transmission-lines and
acoustic tubes, the authors proposed the use of the transmission-line matrix modeling (TLM) for simulating
the sound field in time-domain, which is well-known in electromagnetic engineering community [8]. The
propagation is simulated by tracing the sequences of the transmission and scattering of impulses. The theory
and the demonstrated examples are presented in Refs. [9–11], in which the analogy is used for between the field
and the connected acoustic tubes. The extension to the elastic field is found in Refs. [12,13]. Satou et al.
proposed an equivalent circuit model in time domain for the piezoelectric vibration based on the d’Alembert’s
principle [14]. The present work is to demonstrate the application to the sound absorbing materials. A sound-
absorbing layer was considered to be simply resistive and the case when layer was placed on the room wall was
examined [15]. The present work is concerned with the modeling of a lossy field for the characterization of
more general sound absorbing materials. A lossy component with variable propagation velocity is introduced
for sound absorbing to facilitate the energy consumption and frequency dependence. The absorption
coefficient is considered for the normal, oblique and random incidence. The numerical demonstrations show
that the present approach is capable of modeling the sound absorbing characteristics in homogeneous
materials.

Consider a plane sound wave normally incident from air to the sound absorbing medium at x ¼ 0 as
illustrated in Fig. 1. The propagation speed of sound is c1 in the air and c2 in the absorbing medium,
and the density r1 and r2. The incident sound striking the absorbing boundary is partly transmitted,
and partly reflected. Their pressure amplitudes are defined by pi, pt and pr. The pressure reflection
coefficient R between the two media is the ratio of the reflected to the incident defined by R ¼ pr/pi.
The amount of energy going into the transmission and the reflection depends on the absorbing medium’s
acoustic properties, from which the absorption coefficient is characterized. The absorption coefficient is
defined by the ratio of the absorbed energy to the incident energy so that a ¼ 1� j Rj2 ¼ 1� p2

r=p2
i .

Absorption coefficient depends on the frequency so that aðf Þ ¼ 1� jPrðf Þj
2
�
jPiðf Þj

2. The temporal
responses pi(t) and pr(t) are Fourier-transformed into the frequency domain Pi(f) and Pr(f). With the lumped
constant models and the one-dimensional (1D) modeling, the electrical equivalent circuit model and the
electrical transmission line equivalence have for many years been used by the electro-acoustical engineers for
the electro-acoustical device design in frequency domain. The time-domain approach in the transmission-line
matrix (TLM) modeling is attempted to extend into 2D cases. The TLM method is equivalent to the Huygens’
principle in which the physical process of the wave propagation is simulated as the sequences of the impulse
transmission and scattering. When the frequency characteristic is required, its Fourier transform provides a
full wave analysis.
Fig. 1. Normally incident wave to a sound-absorbing layer.
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Fig. 2. One-dimensional field model: (a) a single section—the lumped model and the transmission-line model and (b) elements in series

connection.
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2. Wave propagation in the 1D TLM model

2.1. 1D TLM element—scattering matrix and wave equation [12]

Plane wave propagation is expressed in terms of the 1D field model which is equivalent to the electrical
transmission line.

Distributed element and its lumped circuit element with two ports are depicted in Fig. 2a. L and C are the
equivalent inductance and capacitance for a unit length. One section of the line or TLM element consists of
two branches whose characteristic impedance is defined by Z0 ¼

ffiffiffiffiffiffiffiffiffiffi
L=C

p
and propagation velocity

c ¼ 1=
ffiffiffiffiffiffiffi
LC
p

. The homogeneous sound field is modeled by a series of the TLM elements as shown in Fig.
2b. f and c are the velocity potentials for the input impulses and the output impulses to the node placed at an
element center, respectively. For node i of the element, the input impulses are kf

1
i and kf

2
i at time t ¼ kDt, and

the output (transmitted and reflected) impulses are kþ1c
1
i and kþ1c

2
i at time t ¼ (k+1)Dt with the time delay of

Dt, where k is the integer number and the superscript indicates the port number.
The relations for this sequence are given by

kþ1

c1
i

c2
i

" #
¼

0 1

1 0

� �
k

f1
i

f2
i

" #
. (1)

So that the velocity potential at i is

kfi ¼ kf
1
i þ kf

2
i . (2)

As the output impulses become the input impulses to the adjacent elements, the compatibility conditions for
connection are

kf
1
iþ1 ¼ kc

2
i ; kf

2
i�1 ¼ kc

1
i . (3)

From Eqs. (1)–(3), one obtains the expression

kþ1fi � 2kfi þ k�1fi ¼ kfiþ1 � 2kfi þ kfi�1. (4)
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This is a finite difference-time domain expression, which can be expanded in Taylor series about kfi to give
the differential expression

q2f
qt2
�

1

c21

q2f
qx2
þ 2

Dt2

4!

q4f
qt4
� c41

q4f
qx4

� �
þ

�
Dt4

6!

q6f
qt6
� c61

q6f
qx6

� �
þ � � �

	
¼ 0, (5)

where as kfi is the velocity potential at an arbitrary point, kfi is replaced by f in Eq. (5). It corresponds to the
wave equation for f with higher order error terms removed as a result of the discretization, that is

q2f
qx2
�

1

c21

q2f
qt2
¼ 0, (6)

where c1 is the propagation speed in the transmission line c1 ¼ Dx/Dt, that is also the speed in free space.
In acoustical engineering, pressure p is often used for velocity potential f. The relation of p to f is

p ¼ rðqf=qtÞ ¼ rðDf=DtÞ ¼ ðfi � fi�1Þ=Dt. In the followings, as we refer both quantities in relative values,
they are treated as similar entity.
2.2. 1D TLM element for lossy and variable propagation velocity medium

The sound absorbing materials form a lossy field of variable propagation speed. It can be modeled by
providing an additional capacitance for changing the propagation speed and a conductance for
the loss. That is, the third branch or a stab of the length Dl/2 with the characteristic impedance Z3 ¼ Z0/Z
is connected and the forth branch of infinite length with the characteristic impedance Z4 ¼ Z0/z
is also connected, as illustrated in Fig. 3a. Elements are connected in series as shown in Fig. 3b to
express the field. Z ¼ 1=ðZ3=Z0Þ is the parameter to describe the relative admittance of the branch 3 for
adjusting the propagation velocity, z ¼ 1=ðZ4=Z0Þ is the parameter to describe the relative admittance of the
branch 4 for adjusting the damping.
Fig. 3. One-dimensional lossy and variable propagation velocity field model: (a) a single section—the lumped model and the

transmission�line model open-circuited, or a closed stub tube and (b) elements in series connection.
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The scattering matrix expression [11] for the velocity potential at i are given by

kþ1

c1
i

c2
i

c3
i

2
664

3
775 ¼ 1

2þ Zþ z

�Z� z 2 2Z

2 �Z� x 2Z

2 2 Z� z� 2

2
64

3
75

k

f1
i

f2
i

f3
i

2
664

3
775. (7)

The impulse kþ1c
4
i scattered to the forth branch is absorbed at infinity and does not go back, so that

kfi ¼ 1�
z

2þ Zþ z

� �
2

2þ Z
ðkf

1
i þ kf

2
i Þ

�
þ

2Z
2þ Z kf

3
i

�
(8)

or

kfi ¼ 1�
z

2þ Zþ z

� �
kf
0
i,

where kf
0
i is the velocity potential of lossless medium with variable propagation speed. The attenuation factor

or the attenuation value per a unit length is defined as

w ¼
z

2þ Zþ z
. (9)

The reflected impulses become the input impulses to the adjacent elements so that the compatibility
conditions are

kf
1
iþ1 ¼ kc

2
i ; kf

2
i�1 ¼ kc

1
i . (10)

One can obtain the expression similar to the Eq. (4)

ðkþ1fi � 2kfi þ k�1fiÞ þ
z

2þ Z
ðkþ1fi � k�1fiÞ ¼

2

2þ Z
ðkfiþ1 � 2kfi þ kfi�1Þ. (11)

This is the finite difference-time domain expression, from which one has the differential expression by
removing higher order error terms as

q2f
qx2
�

2þ Z
2

Dt2

Dx2

q2f
qt2
þ

zDt

Dx2

qf
qt
¼ 0. (12)

Eq. (12) can be modified to be

q2f
qx2
�

1

c22

q2f
qt2
þ

z2
c2

qf
qt
¼ 0, (12)0

where z2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2=2þ ZÞ

p
z=Dx and the propagation speed c2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2=2þ ZÞ

p
c1. c1 is the propagation speed in free

space.

3. Sound wave traveling into the sound-absorbing layer

3.1. The normal incidence absorption coefficient

A testing is first made for the 1D wave normally incident into a sound-absorbing layer from free space as
shown in Fig. 4, where the sound speed and the density of the two media are chosen to be c1 ¼ 340m/s,
Fig. 4. Simulation of wave penetration into sound absorbing layer (one-dimensional TLM model).
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c2 ¼ 240m/s and r1 ¼ 1.2 kg/m3, r2 ¼ 16 kg/m3, respectively. The attenuation factor w in a sound-absorbing
layer is chosen to be 0.01667 (this value is simply given for Z ¼ 2.01398 and z ¼ 0.068 in 1D TLM element and
Z ¼ 4.02778 and z ¼ 0.13609 in 2D TLM element. These values do not refer any particular material and just
chosen for convenience.) The whole field consists of 200Dl (element length Dl ¼ 0.85mm) in which 10Dl is
allocated for the sound-absorbing layer. An impulsive sound source is emitted at the left end and the sound-
absorbing layer is backed by the rigid wall. The incident and reflected waves observed at point i ¼ 80 and the
spectra Fourier-transformed are shown in Fig. 5.
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Fig. 5. The incident and reflected waves observed at point i ¼ 80 and the spectra Fourier-transformed from the temporal domain to

frequency domain.
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Both Pi(f) and Pr(f) are complex number and their magnitudes are shown in the figures. The normal
incidence absorption coefficient is defined in terms of the energy ratio as

aðf Þ ¼ 1�
jPrðf Þj

2

jPiðf Þj
2
, (13)

which is shown in Fig. 6. The figure shows a selective characteristic due to the layer’s thickness resonance.
3.1.1. The absorption characteristics

The absorption characteristics of the absorbing material are determined by many factors. The simulation
shows the curves of the absorption coefficient in frequency domain in which the change of the thickness shift
the resonance peak characteristics.

Fig. 7 illustrates the effect of material thickness. Each absorber is mounted on a rigid wall. As the thickness
increases from 10Dl to 30Dl, the frequency corresponding to half wavelength at which the absorption peaks
decreases. In the thickest case, the higher second resonance appears.
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Fig. 9. Effect of material density.

1.0

0.8

0.6

0.4

0.2

0.0

0 2000 4000 6000 8000 10000

a
b
s
o
rp

ti
o
n
 c

o
e
ff
ic

ie
n
t 

α

frequency (Hz)

the attenuation factor of 0.01667

the attenuation factor of 0.03334

the attenuation factor of 0.06668

Fig. 10. Effect of material resistivity.

L. Chai, Y. Kagawa / Journal of Sound and Vibration 304 (2007) 587–605594



ARTICLE IN PRESS
L. Chai, Y. Kagawa / Journal of Sound and Vibration 304 (2007) 587–605 595
Fig. 8 shows the effect of an air space placed between the absorbing layer and the backing rigid wall. As the
space gap increases from 0Dl to 20Dl, the peak frequency moves down to lower frequency. The spacing works
as to increase the effective thickness of the absorbing layer.

Fig. 9 shows the effect of the material density. As the density increases, the absorption coefficient decreases
as a whole.

Fig. 10 shows the effect of the material’s attenuation factor. The attenuation relates not only to the resistive
component but also to the reactive component as defined by Eq. (9). As the attenuation factor increases, the
absorption increases at lower frequency pushing the peak down. The attenuation factor and the propagation
velocity can be measured in the experiment, from which the parameters Z and z needed in our TLM model can
be obtained.
4. Normal incident propagation on a transmission line—frequency domain solution

The transmission line theory is well established in electrical engineering in which the solution is used to be
sought in frequency domain. No direct time-domain solution has been attempted except that the inverse
Fourier/Laplace transform approach is used from the frequency domain solution.

A lossless transmission line model is shown in Fig. 11(a). The wave equation is given for the
potential f by

d2fðxÞ
dx2

� LC
d2fðxÞ
dt2

¼ 0, (14)

where L and C are the inductance and capacitance per unit length.
It is the same as Eq. (6), in which propagation speed is c1 ¼ 1=

ffiffiffiffiffiffiffi
LC
p

.
The solution is given in the form

fðxÞ ¼ fþe�jbx þ f�ejbx, (15)

fþe�jbx is the wave propagating in the +x direction, while f�ejbx is the wave propagating in the reverse �x

direction, where b ¼ o
ffiffiffiffiffiffiffi
LC
p

is the phase constant.
The characteristic impedance of the lossless line is Z1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L1=C1

p
.

Fig. 11. A one-dimensional transmission line: (a) loss-less line and (b) lossy line.
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Fig. 11(b) shows a lossy transmission line, in which the shunt conductance G is inserted. The wave equation
is

q2f
qx2
� L2C2

q2f
qt2
� GL2

qf
qt
¼ 0, (16)

where L2 and C2 are the inductance and the capacitance per unit length.

It is the same as Eq. (12)0 but for the propagation speed c2 ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffi
L2C2

p
and the shunt conductance

G ¼ z2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2=C2

p
¼ z2=Z02, where Z02 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2=C2

p
is the characteristic impedance of the transmission line.

The solution for f(x) is given in the form

fðxÞ ¼ fþe�gx þ V�egx, (17)

where g ¼ jbþ a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
joL2ðjoC2 þ GÞ

p
. a is the attenuation constant. Please note that a is different from

previous definition of sound absorption coefficient.
The characteristic impedance of the lossy media is Z2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
joL1=ðjoC1 þ GÞ

p
.

By comparing Eqs. (6) and (14) with Eqs. (12)0 and (16), one can establish the relation L ¼ r1, C ¼ 1/(r1c1
2)

and L2 ¼ r2, C2 ¼ 1/(r2c2
2), and G ¼ z2=Z02 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2=ð2þ ZÞÞz

�
ðZ02DlÞ

q
.

At the interface between the two media, the reflection coefficient is given by the relationship as

R ¼
Z2 � Z1

Z2 � Z1
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
joL2=ðjoC2 þ GÞ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
joL=joC

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
joL2=ðjoC2 þ GÞ

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
joL=joC

p . (18)

The transmission coefficient is therefore

T ¼ 1� R. (19)

The matrix expression for the incident and reflected waves are given [16] as

Piðf Þ

Prðf Þ

" #
¼

1

T

1 R

R 1

� �
egx 0

0 e�gx

� �
Pie

Pre

" #
, (20)

where Pe is the pressure at the right-hand side end of the layer.
When the end boundary condition is rigid there, the incident and the reflected are the same so that

Pie ¼ Pre. (21)
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Fig. 13. Two-dimensional TLM models Z0 ¼
ffiffiffiffiffiffiffiffiffiffi
L=C

p
 �
: (a) lossless and (b) lossy.
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Comparison is made for the normal incidence absorption coefficients in two models, which are shown in
Fig. 12. Both methods give the same result and thus the present time domain method using TLM is justifiable.

5. 2D model for oblique incidence

The absorption coefficient of the absorbing materials is known depending on the angle of the incidence.
Here, a 2D TLM model is considered. The lumped circuit element and the distributed element for free space
are depicted in Fig. 13(a). L and C are the equivalent inductance and capacitance for the unit length. Appling
the Kirchhoff’s voltage and current laws on the circuit element, the differential expression about (velocity)
potential f is derived as

q2f
qx2
þ

q2f
qz2
¼

1

c2
q2f
qt2

, (22)

where c ¼ c1=
ffiffiffi
2
p

. It should be noted that the propagation speed in the 2D network is slower than that in free
space by the factor

ffiffiffi
2
p

.
The scattering matrix expression for the coming and scattering impulses is given by

kþ1

c1
x;z

c2
x;z

c3
x;z

c4
x;z

2
666664

3
777775 ¼

1

2

�1 1 1 1

1 �1 1 1

1 1 �1 1

1 1 1 �1

2
6664

3
7775

k

f1
x;z

f2
x;z

f3
x;z

f4
x;z

2
666664

3
777775, (23)

in which kf
n
x;zðn ¼ 1�4Þ is the input impulse on the branch n at time t ¼ kDt and kþ1c

n
x;z refers to the scattered

one at the next time step. The potential at node x, z is evaluated to be

kfx;z ¼ kf
1
x;z þ kf

2
x;z þ kf

3
x;z þ kf

4
x;z

n o.
2. (24)

As the output impulses from an element become the input impulses to the adjacent elements, the
compatibility conditions for connection are

kf
1
xþ1;z ¼ kc

2
x;z; kf

2
x�1;z ¼ kc

1
x;z; kf

3
x;zþ1 ¼ kc

4
x;z; kf

4
x;z�1 ¼ kc

3
x;z. (25)



ARTICLE IN PRESS
L. Chai, Y. Kagawa / Journal of Sound and Vibration 304 (2007) 587–605598
From Eqs. (23)–(25), one obtains the expression

2ðkþ1fx;y � 2kfx;y þ k�1fx;yÞ ¼ kfx�1;z þ kfxþ1;z þ kfx;z�1 þ kfx;zþ1 � 4kfi. (26)

This is a finite difference-time domain expression, which can be expanded in Taylor series about kfi as
before to give the differential expression

q2f
qx2
þ

q2f
qz2
�

2Dt2

Dl2
q2f
qt2
þ

2

Dl2
Dl2

4!

q4f
qx4
þ

q4f
qz4

� �
þ

�
Dl6

6!

q6f
qx6
þ

q6f
qz6

� �
þ � � �

	
�

4

Dl2
Dt4

4!

q4f
qt4
þ

Dt6

6!

q6f
qt6
þ � � �

� 	
¼ 0.

(27)

Eq. (27) corresponds to the wave equation for f with higher order error terms removed as a result of the
discretization, that is

q2f
qx2
þ

q2f
qz2
�

1

c2
q2f
qt2
¼ 0, (28)

where the propagation speed is c ¼ Dl
� ffiffiffi

2
p

Dt

 �

¼ c1=
ffiffiffi
2
p

. c1 is the propagation speed in free space.
A lossy TLM element for the sound-absorbing field is obtained by increasing the capacitance with the

addition of an open stub or a closed end stub tube for adjusting the propagation speed and by introducing the
conductance for the loss, which is shown in Fig. 13(b). The scattering matrix expression is given as

kþ1

c1
x;z

c2
x;z

c3
x;z

c4
x;z

c5
x;z

2
666666664

3
777777775
¼

1

4þ Zþ z

�2� Z� z 1 1 1 Z

1 �2� Z� z 1 1 Z

1 1 �2� Z� z 1 Z

1 1 1 �2� Z� z Z

1 1 1 1 Z� z� 4

2
6666664

3
7777775

k

f1
x;z

f2
x;z

f3
x;z

f4
x;z

f5
x;z

2
666666664

3
777777775

(29)

and the nodal potential at the element center is

kfx;z ¼ 1�
z

4þ Zþ z

� �
2

4þ Z kf
1
x;z þ kf

2
x;z þ kf

3
x;z

��
þkf

4
x;z


þ

2Z
4þ Z kf

5
x;z

�
. (30)

The attenuation factor is the attenuation per unit element length, which is

w ¼
z

4þ Zþ z
. (31)

As the output impulses become the input impulses to the adjacent elements, the compatibility conditions for
connection are

kf
1
xþ1;z ¼ kc

2
x;z; kf

2
x�1;z ¼ kc

1
x;z; kf

3
x;zþ1 ¼ kc

4
x;z; kf

4
x;z�1 ¼ kc

3
x;z (32)

one obtains the expression similar to Eq. (11)

kþ1fx;y � 2kfx;y þ k�1fx;y

� 
þ

z
4þ Z kþ1fx;y � k�1fx;y

� 
¼

2

4þ Z kfx�1;z þ kfxþ1;z þ kfx;z�1 þ kfx;zþ1 � 4kfi


 �
.

(33)

This is the finite difference-time domain expression, form which one has the differential expression by
removing higher order error terms

q2f
qx2
þ

q2f
qz2
�

4þ Z
2

Dt2

Dl2
q2f
qt2
þ

zDt

Dl2
qf
qt
¼ 0. (34)

Eq. (34) can be modified to be

q2f
qx2
þ

q2f
qz2
�

1

c2T

q2f
qt2
�

zT

cT

qf
qt
¼ 0, (34)0
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Fig. 14. Simulation field for oblique incidence.
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Fig. 15. The absorption coefficient for different angles of incidence in two-dimensional TLM model.

Fig. 16. Geometry for propagation of sound through a finite layer absorber with a rigid wall backed.
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where the propagation speed is cT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2=ð4þ ZÞÞ

p
c1 and zT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2=ð4þ ZÞÞ

p
z=Dl. c1 is the propagation speed

in free space.
Consider a sound wave incident to the surface of the sound-absorbing layer surface at an angle y. The layer

is again assumed to be backed by the rigid wall. The geometry of the simulation field is shown in Fig. 14.
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The sound speed and the martial density are c1 ¼ 340m/s, r1 ¼ 1.2 kg/m3 for air, and for the sound-absorbing
layer, they are c2 ¼ 240m/s, r2 ¼ 16 kg/m3. The attenuation coefficient w of the sound-absorbing layer is again
chosen to be 0.01667. The whole field consists of 2000Dl� 2000Dl mesh (Dl ¼ 0.85mm), the surrounding of
which has the non-reflective characteristic impedance termination. The sound-absorbing layer has 10Dl

thickness. The incident and reflected waves are observed at the observation point marked in the figure. From
these waveforms, the absorption coefficient is calculated for the different angles of incidence. This
arrangement simulates the experimental setup for the absorption coefficient measurement on the site for the
various incidence angles. Some results are shown in Fig. 15.

For the normal incidence, if the frequency measure is scaled up by the factor
ffiffiffi
2
p

, it gives the similar
characteristic to that of the 1D model. As the incident angle increases, the peak of the absorption
characteristic shifts upwards in frequency.

6. Oblique incident propagation on the 1D transmission line model—geometrical consideration

Consider a plane sound wave incident at an angle y to a homogenous absorbing layer of finite thickness with
a rigid backing. The wave is reflected at angle j(j ¼ y) at the air-absorber interface and the some transmits
into absorber at angle t. The geometry is shown in Fig. 16. The wavenumber in air is k1, and the wavenumber
in the absorber is k2. Snell’s law implies the relation between the angles and the wavenumbers to be

k1 sin y ¼ k2 sin t. (35)

The wavenumber is inversely related to the wavelength k ¼ 2p/l and corresponds to the phase

constant mentioned in Section 4. The wavenumber in air is k1 ¼ b ¼ o
ffiffiffiffiffiffiffi
LC
p

, and the wavenumber in the

absorber is a complex number k2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2L2C2 � joL2G

p
¼ jg where g is the propagation constant

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�o2L2C2 þ joL2G

p
.

With the transmission line theory, in the case of oblique incidence, the equivalent characteristic impedance
and the propagation constant depend on the angle of incidence and transmission [17]. Characteristic
impedance depends on 1/cos y, the propagation constant is varied with cos y.

The reflection coefficient for the oblique incidence is therefore given by

R ¼
Z2= cos t� Z1= cos y
Z2= cos t� Z1= cos y

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
joL2=ðjoC2 þ GÞ

p
= cos t�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
joL=joC

p
= cos yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

joL2=ðjoC2 þ GÞ= cos t
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
joL=joC

p
= cos y

(36)

and the transmission coefficient is

T ¼ 1� R. (37)

The matrix expression for the incident and reflected waves is given as

PiðyÞ

PrðyÞ

" #
¼

1

T

1 R

R 1

� �
e�jk2l cos t 0

0 e�jk2l cos t

" #
Pie

Pre

" #
, (38)

where Pi and Pr refer to the coming and reflected pressure at the input and Pie and Pre refer to the pressure at
the output end of the layer. The layer is modeled as a four terminals transmission line. As the end boundary
condition is rigid there, the incident and the reflected are the same so that

Pie ¼ Pre. (39)

The absorption coefficient is given by

aðyÞ ¼ 1�
jPrðyÞj2

jPiðyÞj2
.

The comparison is made for the oblique incidence absorption coefficient between the 1D transmission-line
theory and the simulated result for the 2D TLM model as shown in Fig. 17. The two solutions give exactly the
same result, which again validates our TLM modeling. The frequency domain analysis fails in the vicinity of
zero frequency.
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Fig. 18. The simulation model for the two-dimensional reverberation chamber.
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7. Reverberation chamber absorption coefficient—random incidence

We have discussed the absorption for the normal incidence and the oblique incidence. But in actual
situation, when walls in a room are treated by the absorbers, the sound would be incident to the absorbing
wall from every direction or a multitude of incident angles at once, then the evaluation for the random
incidence is important.

The random incident absorption coefficient can be defined for homogenous absorbing materials by

aran ¼

R p=2
0 aðyÞ sin y cos ydyR p=2

0 sin y cos ydy
, (40)

where a(y) is the absorption coefficient for the incident angle y [18].
For more realistic applications, the reverberation chamber method is used for the averaged incident angle in

which the absorption coefficient is obtained from the reverberation time measured in the reverberation
chamber where the absorber is placed.

A 2D reverberation chamber is here modeled by the 2D TLM space. The chamber walls treated by the
absorbing layer under test. An impulsive sound is generated at a point in the middle of the chamber.
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The impulsive sound waves strike the walls, which are reflected repeatedly between the walls, through which
the waves decay as the sound energy is absorbed. The sound pressure is recorded at a point inside the chamber
and the rate of sound energy decay is measured. From this curve, the absorption coefficient of the absorber is
determined. The time taken for the sound pressure level to decay by �60 dB is called the reverberation time.
The Sabine’s formulation or Eyring’s formulation describes the relation of the reverberation time to the
absorption coefficient.

The reverberation time is given for a 2D field by

T ¼
6pS

āDclog10 e
Sabine’s formula; (41a)

T ¼
�6pS

Dc lnð1� āÞlog10 e
Eyring’s formula; (41b)

where T is the reverberation time in seconds, c is the propagation speed of sound in air (in the present model in
2D TLM space), S is the area of the chamber, as sound wave is assumed to be absorbed only by the absorber.
ā is the absorber’s averaged absorption coefficient and D is the total surface length of the absorber.

The absorption coefficient of reverberation chamber method can be calculated by solving Eqs. (41a) or
(41b) for ā. That is

ā ¼
6pS

DLclog10 e
Absorption coefficient based on Sabine’s formula; (41a)0

ā ¼ 1� eð6pS=DLclog10 eÞ Absorption coefficient based on Eyring’s formula: (41b)0

These formulas are the 2D counterparts to the well-known 3D formula [3].
A simulation is made for measuring the absorption coefficient by the reverberation chamber method as

shown in Fig. 18, where the whole field consists of 4000Dl� 4000Dl (Dl ¼ 4.25mm, element length) in which
the absorber of thickness l ¼ 50Dl is mounted on the rigid walls. The sound speed and the density of air and
the absorber are chosen to be c1 ¼ 340m/s, c2 ¼ 240m/s and r1 ¼ 1.2 kg/m3, r2 ¼ 16 kg/m3 respectively. The
attenuation factor w in the absorber is chosen to be much larger value of 0.1667 per element length. Sound
source of a single shot sine wave are chosen, whose central frequencies are 250, 500, 1000, 2000, 3000 and
4000Hz. The sound is emitted at the point in the middle of the chamber. The sound source with 1000Hz
central frequency and the corresponding frequency spectra are shown in Fig. 19. The incident and reflected
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waves are recorded at the observation point (3000, 2000) marked in the figure. The waveform in reverberation
is shown in Fig. 20. From the pressure decay, the reverberation time is 1.08 s. The absorption coefficients are
calculated based on Sabing’s or Eyring’s formulation. Fig. 21 shows the frequency characteristics of the
absorption coefficients due to the two definitions. It is well known that Sabine’s absorption coefficient is not
accurate for the case of large absorption coefficient and in that range Eyring’s absorption coefficient is
supposed to be better. The difference of the coefficients between Sabing’s and Eying’s is as much as twenty
percents. The absorption coefficient of the normal incidence and that of the random incidence based on Eq.
(40) are also shown in the figure. The frequency characteristic does not exhibit the resonance as the
attenuation factor is chosen to be much larger.

8. Concluding remarks

We proposed a lossy transmission-line matrix (TLM) model with variable propagation speed to characterize
the sound-absorbing media for which the relation of the attenuation factor to the parameters in TLM models
was established. The treatment simulates the direct time-domain response for absorbing materials possible.
The examination was made for the frequency characteristics with the Fourier transformed for the normal and
oblique incidence. The solutions were compared with the frequency domain solution based on the 1D
transmission-line theory. Good agreement proved the validity of the present modeling. The simulation was
extended to the case of the modeling of the reverberation chamber. In the present simulation, we are only
confining ourselves to the 2D field models. It is however straightforward to extend to the 3D field modeling, as
the sound is scalar, except that the 3D simulation requires more memory and computational time resources. In
the extreme case of the perfect absorption, the modeling leads to the transparent boundary, which is useful for
simulating an unbounded non-reflective space [19].
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